Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.530
Filtrar
1.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605012

RESUMO

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Assuntos
Osteogênese , Tecidos Suporte , Osteogênese/fisiologia , Tecidos Suporte/química , Porosidade , Impressão Tridimensional , Zinco/farmacologia
2.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556862

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Assuntos
Antraquinonas , Compostos Azo , Osteogênese , Células-Tronco , Humanos , Osteogênese/fisiologia , Células-Tronco/metabolismo , Polpa Dentária , Proliferação de Células , Diferenciação Celular , Células Cultivadas , Histona Acetiltransferases/metabolismo
3.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
4.
Mol Biol Rep ; 51(1): 525, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632128

RESUMO

BACKGROUND: A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS: MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-ß1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS: We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS: As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.


Assuntos
Osteoclastos , Osteogênese , Osteoclastos/metabolismo , Osteogênese/fisiologia , Meios de Cultivo Condicionados/farmacologia , Diferenciação Celular , Osteoblastos/metabolismo
5.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622793

RESUMO

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/fisiologia , Pressão Hidrostática , Diferenciação Celular/fisiologia , Fatores de Transcrição/metabolismo , Células Cultivadas , Células da Medula Óssea
6.
Sci Rep ; 14(1): 6719, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509204

RESUMO

Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Camundongos , Animais , Ligamento Periodontal , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Células Cultivadas , Diferenciação Celular , Células-Tronco , Doenças Periodontais/terapia , Doenças Periodontais/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Ligamentos , Osteogênese/fisiologia
7.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456502

RESUMO

Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.


Assuntos
Osteogênese , Calcificação Vascular , Animais , Camundongos , Calcificação Fisiológica , Diferenciação Celular , Células Endoteliais/fisiologia , Osteogênese/fisiologia , Calcificação Vascular/etiologia
8.
Biomolecules ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540772

RESUMO

The enhancement of bioactivity in materials has become an important focus within the field of bone tissue engineering. Four-dimensional intelligent osteogenic module, an innovative fusion of 3D printing with the time axis, shows immense potential in augmenting the bioactivity of these materials, thereby facilitating autologous bone regeneration efficiently. This study focuses on novel bone repair materials, particularly bioactive scaffolds with a developmental osteogenic microenvironment prepared through 3D bioprinting technology. This research mainly creates a developmental osteogenic microenvironment named "DOME". This is primed by the application of a small amount of the small molecule drug SB216763, which activates canonical Wnt signaling in osteocytes, promoting osteogenesis and mineralization nodule formation in bone marrow stromal cells and inhibiting the formation of adipocytes. Moreover, DOME enhances endothelial cell migration and angiogenesis, which is integral to bone repair. More importantly, the DOME-PCI3D system, a 4D intelligent osteogenic module constructed through 3D bioprinting, stably supports cell growth (91.2% survival rate after 7 days) and significantly increases the expression of osteogenic transcription factors in bone marrow stromal cells and induces osteogenic differentiation and mineralization for 28 days. This study presents a novel approach for bone repair, employing 3D bioprinting to create a multifunctional 4D intelligent osteogenic module. This innovative method not only resolves challenges related to shape-matching and biological activity but also demonstrates the vast potential for applications in bone repair.


Assuntos
Indóis , Maleimidas , Osteogênese , Via de Sinalização Wnt , Osteogênese/fisiologia , Osteócitos , Osso e Ossos , Engenharia Tecidual/métodos , Diferenciação Celular
9.
Methods Mol Biol ; 2783: 195-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478234

RESUMO

Adipose-derived stromal/stem cells (ASCs) and decellularized adipose tissue (DAT) are adipose tissue products obtained from individuals undergoing fat removal procedures like liposuction, lipectomy, or breast reduction. DAT hydrogel is prepared by removing the cells from the adipose tissue and digesting it to form a liquid material that forms a gel at physiological temperature. ASCs seeded on DAT have displayed osteogenic potential in vitro and in animal models of bone defects. Herein, we describe the methods for preparing DAT hydrogel, ASC seeding in DAT hydrogel, osteogenic differentiation of ASCs, creation of critical-sized femur defect model in mice, its treatment with ASC-DAT hydrogel, and analyses.


Assuntos
Hidrogéis , Osteogênese , Animais , Camundongos , Osteogênese/fisiologia , Tecido Adiposo , Adipócitos , Diferenciação Celular/fisiologia , Células-Tronco
10.
Pathol Res Pract ; 255: 155220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432050

RESUMO

BACKGROUND: This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS: Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS: IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION: The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.


Assuntos
Adenina , Consolidação da Fratura , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Animais , Camundongos , Adenina/análogos & derivados , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474198

RESUMO

Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/ß-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.


Assuntos
Periodontite , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese/fisiologia , Ligamento Periodontal , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Proantocianidinas/metabolismo , Epigênese Genética , Células-Tronco/metabolismo , Periodontite/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
12.
J Appl Biomed ; 22(1): 33-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505968

RESUMO

PURPOSE: The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS: HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS: Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1ß, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION: These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.


Assuntos
Antraquinonas , Glucosídeos , Luteolina , Osteogênese , Aldeído Pirúvico , Humanos , Osteogênese/fisiologia , Aldeído Pirúvico/toxicidade , Células Cultivadas , Espécies Reativas de Oxigênio , Polpa Dentária , Óxido de Magnésio , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
13.
J Cell Mol Med ; 28(7): e18231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494855

RESUMO

Fracture of the alveolar bone resorption is a common complication in orthodontic treatment, which mainly caused by extreme mechanical loading. However, the ferroptosis with orthodontic tooth movement(OTM) relationship has not been thoroughly described. We here analysed whether ferroptosis is involved in OTM-associated alveolar bone loss. Mouse osteoblasts (MC-3T3) and knockdown glutathione peroxidase 4 (GPX4) MC-3T3 were stimulated with compressive force loading and ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and the changes in lipid peroxidation morphology, expression of ferroptosis-related factors and osteogenesis levels were detected. After establishing the rat experimental OTM model, the changes in ferroptosis-related factors and osteogenesis levels were reevaluated in the same manner. Ferroptosis was involved in mechanical stress regulating osteoblast remodelling, and Fer-1 and erastin affected osteoblasts under compression force loading. Fer-1 regulated ferroptosis and autophagy in MC-3T3 and promoted bone proliferation. GPX4-dependent ferroptosis stimulated the YAP (homologous oncoproteins Yes-associated protein) pathway, and GPX4 promoted ferroptosis via the YAP-TEAD (transcriptional enhanced associate domain) signal pathway under mechanical compression force. The in vivo experiment results were consistent with the in vitro experiment results. Ferroptosis transpires during the motion of orthodontic teeth, with compression force side occurring earlier than stretch side within 4 h. GPX4 plays an important role in alveolar bone loss, while Fer-1 can inhibit the compression force-side alveolar bone loss. GPX4's Hippo-YAP pathway is activated by the lack of compression force in the lateral alveolar bone.


Assuntos
Perda do Osso Alveolar , Ferroptose , Camundongos , Ratos , Animais , Osteogênese/fisiologia , Estresse Mecânico , Transdução de Sinais
14.
Discov Med ; 36(182): 494-508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531790

RESUMO

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a highly effective method for bone regeneration, commonly employed in treating craniofacial defects and deformities. Osteocytes sense mechanical forces in the pericellular space, relay external stimuli to biochemical changes, and send signals to other effector cells, including bone marrow mesenchymal stem cells (BM-MSCs), to regulate bone resorption and formation. Piezo1 potentially affects the secretion signal molecules of bone cells under mechanical stretch. The primary aim of this study was to enhance our comprehension of the molecular biology underlying this therapeutic approach and to identify specific signaling molecules that facilitate bone formation in response to stretch forces. METHODS: Mechanical stretching was applied to negative controls and Piezo1 knockdown osteocyte-like MLO-Y4 cells. Alkaline phosphatase and Alizarin Red S staining were used to survey the osteogenic potential of BM-MSCs. The production and secretion content of adenosine triphosphate (ATP) was measured using ATP content determination analysis. Pathway-related and osteo-specific genes and proteins were evaluated using real-time polymerase chain reaction (RT-PCR), Western blots, and immunofluorescence. Mitochondrial organization was examined with a transmission electron microscope. RESULTS: The conditioned medium of stretch-exposed MLO-Y4s significantly upregulated osteogenesis-related indicators of BM-MSCs (p < 0.001). The upregulation of BM-MSC osteogenesis was associated with ATP release from osteocytes. Mechanically induced calcium transfer and transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation mediated by Piezo1 could promote mitochondrial fission and ATP release. Osteocytes detected stretch forces through Piezo1, triggering calcium influx, TAZ nuclear translocation, and ATP production. CONCLUSIONS: The stretch stimulation of Piezo1 induces calcium influx, which in turn promotes calcium-related TAZ nuclear translocation, changes in mitochondrial dynamics, and the release of ATP in osteocytes. This signaling cascade leads to an up-regulation in the osteogenic capacity of BM-MSCs. Mitochondrial energy metabolism of mechanosensitive protein Piezo1-dependent and ATP release may provide a new effective intervention method for mechanically related bone remodeling.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/fisiologia , Osteócitos/metabolismo , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Células da Medula Óssea/metabolismo
15.
Clin Oral Investig ; 28(4): 219, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492123

RESUMO

OBJECTIVES: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.


Assuntos
MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Osteogênese/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ligamento Periodontal , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco , Células Cultivadas
16.
Cell Signal ; 118: 111147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513808

RESUMO

Maxillofacial bone defect is one of the common symptoms in maxillofacial, which affects the function and aesthetics of maxillofacial region. Periodontal ligament stem cells (PDLSCs) are extensively used in bone tissue engineering. The mechanism that regulates the osteogenic differentiation of PDLSCs remains not fully elucidated. Previous studies demonstrated that l-Caldesmon (l-CALD, or CALD1) might be involved in the osteogenic differentiation of PDLSCs. Here, the mechanism by which CALD1 regulates the osteogenic differentiation of PDLSCs is investigated. The osteogenic differentiation of PDLSCs is enhanced with Cald1 knockdown. Whole transcriptome sequencing (RNA-seq) analysis shows that bone morphogenetic proteins (BMP) signaling pathway and Wingless type (Wnt) pathway have significant change with Cald1 knockdown, and the expressions of Wnt-induced secreted protein 1 (WISP1), BMP2, Smad1/5/9, and p-Smad1/5/9 are significantly upregulated, while Glycogen synthase kinase 3ß (GSK3ß) and p-GSK3ß are downregulated. In addition, subcutaneous implantation in nude mice shows that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs in vivo. Taken together, this study demonstrates that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs by BMP and Wnt signaling pathways, and provides a novel approach for subsequent clinical treatment.


Assuntos
Osteogênese , Ligamento Periodontal , Camundongos , Animais , Osteogênese/fisiologia , Camundongos Nus , Proteínas de Ligação a Calmodulina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco , Diferenciação Celular/fisiologia , Via de Sinalização Wnt , Células Cultivadas
17.
J Biomater Sci Polym Ed ; 35(6): 880-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346177

RESUMO

The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.


Assuntos
Cálcio , Osteogênese , Humanos , Animais , Bovinos , Osteogênese/fisiologia , Xenoenxertos , Cálcio/metabolismo , Diferenciação Celular , Osteoblastos , Colágeno/farmacologia , Glicosaminoglicanos , Proliferação de Células , Fosfatase Alcalina/metabolismo
18.
Int J Biol Macromol ; 262(Pt 2): 130218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367780

RESUMO

Hydrogels, integrating diverse biocompatible materials, have emerged as promising candidates for bone repair applications. This study presents a double network hydrogel designed for bone tissue engineering, combining poly(ethylene glycol) diacrylate (PEGDA) and chitosan (CS) crosslinked through UV polymerization and ionic crosslinking. Concurrently, copper-doped mesoporous silica nanospheres (Cu-MSNs) were synthesized using a one-pot method. Cu-MSNs underwent additional modification through in-situ biomineralization, resulting in the formation of an apatite layer. Polydopamine was employed to facilitate the deposition of Calcium (Ca) and Phosphate (P) ions on the surface of Cu-MSNs (Cu-MSNs/PDA@CaP). Composite hydrogels were created by integrating varied concentrations of Cu-MSNs/PDA@CaP (25, 50, 100, 150, 200 µg/mL). Characterization unveiled distinctive interconnected porous structures within the composite hydrogel, showcasing a notable 169.6 % enhancement in compressive stress (elevating from 89.01 to 240.19 kPa) compared to pure PEGDA. In vitro biocompatibility experiments illustrated that the composite hydrogel maintained elevated cell viability (up to 106.6 %) and facilitated rapid cell proliferation over 7 days. The hydrogel demonstrated a substantial 57.58 % rise in ALP expression and a surprising 235.27 % increase in ARS staining. Moreover, it significantly enhanced the expression of crucial osteogenic genes, such as run-related transcription factors 2 (RUNX2), collagen 1a1 (Col1a1), and secreted phosphoprotein 1 (Spp1), establishing it as a promising scaffold for bone regeneration. This study shows how Cu-MSNs/PDA@CaP were successfully integrated into a double network hydrogel, resulting in a composite material with good biological responses. Due to its improved characteristics, this composite hydrogel holds the potential for advancing bone regeneration procedures.


Assuntos
Quitosana , Nanosferas , Polietilenoglicóis , Nanosferas/química , Hidrogéis/farmacologia , Cobre/farmacologia , Dióxido de Silício/química , Regeneração Óssea , Osteogênese/fisiologia , Engenharia Tecidual , Tecidos Suporte/química
19.
JCI Insight ; 9(4)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385749

RESUMO

RNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear. Here, we show that RBP-Y-box-binding protein 1 (YBX1) was strongly reduced in the bone vasculature of ovariectomy (OVX) mice. Endothelial cell-specific deletion of Ybx1 impaired CD31-high, endomucin-high (CD31hiEMCNhi) endothelium morphology and resulted in low bone mass whereas Ybx1 overexpression promoted angiogenesis-dependent osteogenesis and ameliorated bone loss. Mechanistically, YBX1 deletion disrupted CD31, EMCN, and bone morphogenetic protein 4 (BMP4) stability in an m5C-dependent manner and blocked endothelium-derived BMP4 release, thereby inhibiting osteogenic differentiation of bone mesenchymal stromal cells. Administration of recombinant BMP4 protein restored impaired bone formation in Ybx1 deletion mice. Tail vein injection of CD31-modified polyethylene glycol-poly (lactic-co-glycolic acid) carrying sciadopitysin, a natural YBX1 agonist, pharmacologically partially reversed CD31hiEMCNhi vessels' decline and improved bone mass in both OVX and aging animals. These findings demonstrated the role of RBP-YBX1 in angiogenesis-dependent bone formation and provided a therapeutic approach for ameliorating osteoporosis.


Assuntos
Osteogênese , Osteoporose , Fatores de Transcrição , Animais , Feminino , Camundongos , Osso e Ossos/metabolismo , Endotélio/metabolismo , Osteogênese/fisiologia , Osteoporose/genética , RNA , Fatores de Transcrição/genética
20.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396834

RESUMO

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Assuntos
Regeneração Óssea , Periósteo , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Células-Tronco , Diferenciação Celular , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...